Тригонометрические уравнения и отбор корней

Уравнения и системы уравнений занимают важное место в математике. В 10 классе очень много внимания уделяется решению тригонометрических уравнений. Для успешного решения тригонометрических уравнений необходимо знать не только формулы и методы решения этих уравнений, но и правильно отбирать корни на заданном промежутке или при других дополнительных условиях. В последние годы в профильном варианте ЕГЭ по математике 13 задание это - «Решить тригонометрическое уравнение и выполнить отбор корней, удовлетворяющих условию или решить систему уравнений».

Рассмотрим некоторые примеры.

Уравнение sinx=a

Если |a|>1, то уравнение sinx=a не имеет корней.

Например, уравнение sinx=2 не имеет корней.

Если $|a| \le 1$, то корни уравнения выражаются формулой $x = (-1)^k$ arcsina+πk, k∈Z.

Что же такое arcsina? Арксинус в переводе с латинского означает «дуга и синус». Это обратная функция.

Если $|a| \le 1$, то arcsina (арксинус а) — это такое число из отрезка $[-\pi/2;\pi/2]$, синус которого равен а.

Говоря иначе:

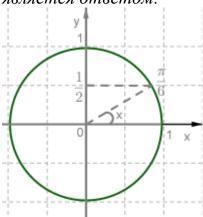
 $\arcsin = x \Rightarrow \sin x = a, |a| \le 1, x \in [-\pi/2; \pi/2].$

Рассмотрим данную теорию на примере.

Пример:

найти arcsin1/2.

Выражение arcsin1/2 показывает, что синус угла x равен 1/2, т. е. sinx=1/2. Далее просто находим точку этого синуса на числовой окружности, что и является ответом:



точка 1/2, находящаяся на оси у, соответствует точке $\pi 6$ на числовой окружности.

Значит, $\arcsin 1/2 = \pi/6$.

Обрати внимание!

Если $\sin \pi/6 = 1/2$, то $\arcsin 1/2 = \pi/6$.

В первом случае по точке на числовой окружности находим значение синуса, а во втором — наоборот, по значению синуса находим точку на числовой окружности. Движение в обратную сторону. Это и есть арксинус.

Теорема. Для любого $a \in [-1;1]$ справедлива формула $\arcsin(-a) = -\arcsin a$.

Частные случаи:

- 1. $\sin x=0 \Rightarrow x=\pi k, k \in \mathbb{Z}$;
- 2. $\sin x = 1 \Rightarrow x = \pi/2 + 2\pi k, k \in \mathbb{Z}$;
- 3. $\sin x = -1 \Rightarrow x = -\pi/2 + 2\pi k, k \in \mathbb{Z}$.

Пример:

решить уравнение sinx=-1/2.

Используем формулу $x=(-1)^k$ arcsina+ π k,k∈Z

и получаем ответ $x=(-1)^k(-\pi/6)+\pi k, k∈Z$.

Уравнения вида:

sinf(x)=a, cosf(x)=a

имеют смысл только тогда, когда $-1 \le a \le 1$

Уравнения вида:

tgx=a, ctgx=a

имеют смысл уже при всех значениях а.

То есть, не надо знать вообще никаких формул, чтобы спокойно ответить, что уравнения, например:

 $\sin x = 1000$

cos(3x-sin(x))=2

 $\sin(2x2-2x+1)=-3$

Корней не имеют!!!

Почему?

Потому что они "не попадают" в промежуток от минус единицы до плюс единицы.

Тригонометрия

1.
$$\cos^2 \alpha + \sin^2 \alpha = 1$$
; $tg \alpha \cdot ctg \alpha = 1$;

2.
$$tg\alpha = \frac{\sin\alpha}{\cos\alpha}$$
; $ctg\alpha = \frac{\cos\alpha}{\sin\alpha}$;
3. $tg\alpha = \frac{1}{ctg\alpha}$; $ctg\alpha = \frac{1}{tg\alpha}$;

3.
$$tg\alpha = \frac{1}{ctg\alpha}$$
; $ctg\alpha = \frac{1}{tq\alpha}$;

4.
$$1+tg^2\alpha = \frac{1}{\cos^2\alpha}$$
; $1+ctg^2\alpha = \frac{1}{\sin^2\alpha}$;

5.
$$sin(\alpha \pm \beta) = sin\alpha \cdot cos \beta \pm cos \alpha \cdot sin \beta$$
;

7.
$$tg(\alpha \pm \beta) = \frac{tg \alpha \pm tg \beta}{1 \mp tg \alpha \cdot tg \beta}$$
;

8.
$$\sin 2\alpha = 2 \sin \alpha \cdot \cos \alpha$$
:

9.
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$
;

10.
$$\cos 2\alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$
;

11.
$$tg 2\alpha = \frac{2tg \alpha}{1 - tg^2 \alpha}$$
; $ctg 2\alpha = \frac{ctg^2 \alpha - 1}{2ctg \alpha}$;

12.
$$\sin \alpha \pm \sin \beta = 2 \sin \frac{\alpha \pm \beta}{2} \cdot \cos \frac{\alpha \mp \beta}{2}$$
;

13.
$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$
;

14.
$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$
;

15.
$$tg \alpha \pm tg \beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cdot \cos \beta}$$
;

16.
$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$
; $\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$;

17.
$$\sin \alpha \cdot \cos \beta = \frac{1}{2} (\sin(\alpha + \beta) + \sin(\alpha - \beta));$$

18.
$$\cos \alpha \cdot \cos \beta = \frac{1}{2} (\cos(\alpha + \beta) + \cos(\alpha - \beta));$$

19.
$$\sin \alpha \cdot \sin \beta = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

20.
$$\left|\sin\frac{\alpha}{2}\right| = \sqrt{\frac{1-\cos\alpha}{2}}$$
; $\left|\cos\frac{\alpha}{2}\right| = \sqrt{\frac{1+\cos\alpha}{2}}$;

21.
$$tg\frac{\alpha}{2} = \frac{\sin\alpha}{1 + \cos\alpha}$$
; $ctg\frac{\alpha}{2} = \frac{\sin\alpha}{1 - \cos\alpha}$.

Таблица значений тригонометрических функций

													-				
α, pa∂	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
α,°	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
sinα	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cosa	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tgα	0	$\frac{1}{\sqrt{3}}$	1	√3	-	-√3	-1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	√3	7.	- √3	-1	$-\frac{1}{\sqrt{3}}$	0
ctga	~	√3	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	- √3	×	√3	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	- √3	-

Решение тригонометрических уравнений

fuee pewenue (* arcsin a + πn unu csin a + 2πn - arcsin a + 2πn ccos a + 2πn	α = 0 x = πn	$\alpha = 1$ $x = \frac{\pi}{2} + 2\pi n$	$\alpha = -1$ $x = -\frac{\pi}{2} + 2\pi n$
uπu csin a + 2πn – arcsin a + 2πn ccos a + 2πn	x = nn	$x = \frac{\pi}{2} + 2\pi n$	$x = -\frac{\pi}{2} + 2\pi r$
uπu ccos a + 2πn arccos a + 2πn	$x = \frac{\pi}{2} + \pi n$	$x = 2\pi n$	$x = \pi + 2\pi n$
g a + nn	$x = \pi n$	$x = \frac{\pi}{4} + \pi n$	$x = -\frac{\pi}{4} + \pi n$
ctg a + mn	$x = \frac{\pi}{2} + \pi n$	$x = \frac{\pi}{4} + \pi n$	$x = \frac{3\pi}{4} + \pi n$
	ctg a + πn	$x = \frac{\pi}{2} + \pi n$	